MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL
 Paper Code : OEC-IT601A Numerical Methods
 UPID : 006587

Time Allotted : 3 Hours
Full Marks :70
The Figures in the margin indicate full marks.
Candidate are required to give their answers in their own words as far as practicable

Group-A (Very Short Answer Type Question)

1. Answer any ten of the following:
(I) How many predictor and corrector steps does the fourth-order Runge-Kutta method use ?
(II) Distinguish between Round off error and Truncation error.
(III) If $y=f(x)$ are known only at ($n+1$) distinct interpolating points, then what is the LaGrange polynomial degree.
(IV) The degree of precision of Trapezoidal rule is.
(v) When do you call a System of Linear Equation $A X=B$ to be Consistent?
(Vi) Find a root of the equation $x^{2}-2 x-5=0$ by Newton - Raphson method.
(VII) If $5 / 3$ is approximated to 1.6667 , then absolute error is
(viII) Find Newton's backward difference interpolation polynomial against the tabulated values:

$x:$	3	4	5	6
$f(x):$	6	24	60	120

(IX) THe degree of precision of Weddle's rule is
(X) What is the principle of LU factorization method?
(XI) Find the forward interpolation polynomial for the function $f(x)$ where $f(0)=-1, f(1)=1, f(2)=1$ and $f(3)=-2$.
(XII) Simpson's one third rule is applicable only if the number of sub-interval is

Group-B (Short Answer Type Question)
Answer any three of the following :
2. Find the missing term from the following Interpolation table.

x	$\mathrm{F}(\mathrm{x})$
2	45
3	49.2
4	54.1
5	$?$
6	67.4

3. Evaluate $\int_{0.1}^{0.8}\left(e^{x}+2 x\right) d x$ by Trapezoidal Rule taking $\mathrm{h}=0.1$, correct up to 5 -decimal places.
4. Using following data, find the value of y at $\mathrm{x}=5$ by the Newton's forwaed interpolation polynomial.

X	0	10	20	30	40
Y	7	18	32	48	85

5. Solve the following equation by LU Decomposition methods:

$$
\begin{gathered}
x+y+z=1 \\
4 x+3 y-z=6 \\
3 x+5 y+3 z=4
\end{gathered}
$$

6. Using Newton's backward interpolation formula, find the annual premium at the age of 33 from the following data

Age in years (x):	24	28	32	36	40
Annual premium(y):	28.06	30.19	32.75	34.94	40

Group-C (Long Answer Type Question)

Answer any three of the following :
7. (a) Evaluate $\int_{0}^{1} x^{3} \mathrm{dx}$, by Trapezoidal Rule, with $\mathrm{n}=5$.
(b) Evaluate $\int_{0}^{\pi / 2} \sqrt{1-0.162 \sin ^{2} \varphi} d \varphi$, by Simpson's One Third Rule, correct up to two decimal places.
8. (a) Find $y(0.10)$ and $y(0.15)$, by Euler's Method, from the differential equation, $\frac{d y}{d x}=x^{2}+y^{2}$, $y(0)=0$, correct upto four decimal places, taking step length $h=0.05$.
(b) Solve by Euler's modified method the following differential equation for $\mathrm{x}=0.02$, by taking
step length $\mathrm{h}=0.01$,

$$
\frac{d y}{d x}=\mathrm{x}^{2}+\mathrm{y}, \mathrm{y}=1 \text { when } \mathrm{x}=0
$$

9. (a) Using Lagrange Interpolation find the value of y at $x=8$ Given $y(0)=18, y(1)=42, y(7)=57$ and $y(9)$
(b) Compute the value of $f(7.5)$ from the following table

$\mathrm{x}:$	3	4	5	6	7	8
$\mathrm{f}(\mathrm{x}):$	27	64	125	216	343	512

10. (a) Find the value of the given variables by using Gauss elimination method:

$$
\begin{aligned}
& x+3 y+6 z=10 \\
& x+4 y+5 z=14 \\
& x+6 y+7 z=18
\end{aligned}
$$

(b) Solve the system of equations $x_{1}+x_{2}+x_{3}=1,3 x_{1}+x_{2}-3 x_{3}=5$ and $x_{1}-2 x_{2}-5 x_{3}=10$ by

LU factorization method.
11. (a)

Find the population of the city in 1925.The population of a city is given as:

Year(x)	Population(Thousand)
1891	46
1901	66
1911	81
1921	93
1931	101

(b) Find the missing value of the following table:

$\mathrm{x}:$	2	4	6	8	10
$\mathrm{y}:$	5.6	8.6	13.9	-	35.6

*** END OF PAPER ***

