

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: OEC-IT601A Numerical Methods
UPID: 006587

Time Allotted : 3 Hours Full Marks :70

The Figures in the margin indicate full marks.

Candidate are required to give their answers in their own words as far as practicable

Group-A (Very Short Answer Type Question)

1. Answer any ten of the following:

 $[1 \times 10 = 10]$

- (I) How many predictor and corrector steps does the fourth-order Runge-Kutta method use?
- (II) Distinguish between Round off error and Truncation error.
- (III) If y = f(x) are known only at (n+1) distinct interpolating points, then what is the LaGrange polynomial degree.
- (IV) The degree of precision of Trapezoidal rule is.
- (V) When do you call a System of Linear Equation AX = B to be Consistent?
- Find a root of the equation $x^2 2x 5 = 0$ by Newton Raphson method.
- (VII) If 5/3 is approximated to 1.6667, then absolute error is
- Find Newton's backward difference interpolation polynomial against the tabulated values:

x:	3	4	5	6	
f(x):	6	24	60	120	

- (IX) The degree of precision of Weddle's rule is
- (X) What is the principle of LU factorization method?
- Find the forward interpolation polynomial for the function f(x) where f(0) = -1, f(1) = 1, f(2) = 1 and f(3) = -2.
- (XII) Simpson's one third rule is applicable only if the number of sub-interval is

Group-B (Short Answer Type Question)

Answer any three of the following:

 $[5 \times 3 = 15]$

Find the missing term from the following Interpolation table.

X	F(x)
2	45
3	49.2
4	54.1
5	?
6	67.4

Evaluate $\int_{0.1}^{0.8} (e^x + 2x) dx$ by Trapezoidal Rule taking h=0.1, correct up to 5-decimal places.

[5]

X	0	10	20	30	40
Y	7	18	32	48	85

Solve the following equation by LU Decomposition methods:

6. Using Newton's backward interpolation formula, find the annual premium at the age of 33 from the following data

Age in years (x):	24	28	32	36	40
Annual premium(y):	28.06	30.19	32.75	34.94	40

Group-C (Long Answer Type Question)

Answer any three of the following:

 $[15 \times 3 = 45]$

[5]

[5]

[5]

Evaluate $\int_0^1 x^3 dx$, by Trapezoidal Rule, with n = 5.

[7]

[8]

[8]

[8]

[7]

- Evaluate $\int_0^{\pi/2} \sqrt{1 0.162 \sin^2 \varphi} \ d\varphi$, by Simpson's One Third Rule, correct up to two decimal places.
- 8. (a) Find y(0.10) and y(0.15), by Euler's Method, from the differential equation, $\frac{dy}{dx} = x^2 + y^2$, y(0) = 0, correct upto four decimal places, taking step length h = 0.05.
 - Solve by Euler's modified method the following differential equation for x = 0.02, by taking step length h = 0.01,

$$\frac{dy}{dx} = x^2 + y$$
, $y = 1$ when $x = 0$.

- 9. (a) Using Lagrange Interpolation find the value of y at x=8 Given y(0) = 18, y(1) = 42, y(7) = 57 and y(9) = 90?
 - (b) Compute the value of f(7.5) from the following table

X:	3	4	5	6	7	8
f(x):	27	64	125	216	343	512

Find the value of the given variables by using Gauss elimination method:

$$x + 3y + 6z = 10$$

 $x + 4y + 5z = 14$
 $x + 6y + 7z = 18$

2/3

[7]

- (b) Solve the system of equations $x_1 + x_2 + x_3 = 1$, $3x_1 + x_2 3x_3 = 5$ and $x_1 2x_2 5x_3 = 10$ by LU factorization method.
- 11. (a) [8] Find the population of the city in 1925. The population of a city is given as:

Year(x)	Population(Thousand)
1891	46
1901	66
1911	81
1921	93
1931	101

(b) Find the missing value of the following table:

x:	2	4	6	8	10
y:	5.6	8.6	13.9	-	35.6

*** END OF PAPER ***

[8]

[7]